HCA.py 7/16/2022

from collections import defaultdict, deque, Counter
from sklearn.cluster import AgglomerativeClustering
from scipy.spatial.distance import squareform
import numpy as np

from matplotlib import pyplot as plt

from scipy.cluster.hierarchy import dendrogram

from schedule import * #place schedule.py on path
from timeit import default timer as timer

Performs Hierarchical Cluster Analysis on geographic locations (pre-loading
distances) .

Call script as HCA.py

INPUT FILENAME of company (conanme, datefirst) locations (lat, long), within
spatial temporal units (cbsa, state, year).

DISTANCE FILENAME of source (lat, long), destination (lat,long), dist.

Copyleft Ed Egan, 2022.

ATTENTION!!! You must modify hierarchy.py as follows:
Include the following at line 188:
#4#H4#Hd4HHHE44H##4+ Begin Addition (section 1) #########44H4#4##444#
DISTANCE FILENAME = r'E:\projects\hca\CBSARandoméLocs2006Lookup.txt’

#
DISTANCES={}
with open(DISTANCE FILENAME) as f:
next (f) #loose the header row
for line in f:
line=line.rstrip('\r\n")
parts = line.split('\t'")
source=(float (parts[0]), float (parts[1l]))
dest=(float (parts[2]),float (parts[3]))
dist=parts[4]
if source in DISTANCES:
_DISTANCES [source] [dest]=dist
else:
_DISTANCES [source]={}
_DISTANCES [source] [dest]=dist
OFHEHEEHF RS 44444 End Addition (section 1) #H#H#HF#H#FHF###FH#HH44H
Comment out the current distance method on 1ln 732
vy = distance.pdist(y, metric)

Include the following at line 188:
HHH 4444 Begin Addition (section 2) #########444444444
points=[tuple (row) for row in y]
sqform=np.zeros ((len(points), len (points)))
for i,source in enumerate (points) :
for j,dest in enumerate (points):
sgform([i, j]=_ DISTANCES [source] [dest]
y=distance.squareform(sgform)
HHAFFFHHHHHFFHHFEEHS End Addition (section 2) ##H#FHH#HFHFFFFEHHHHF

=

#
#
#
#
#
#

Set DISTANCE FILENAME in hierarchy.py ln 189

Set the INPUT FILENAME and OUTPUT FILENAME below.

INPUT FILENAME = r'E:\projects\hca\SelectCBSARandomForHCA.txt'

OUTPUT FILENAME =r'E:\projects\hca\SelectCBSARandomForHCA results.txt'

def parse colevel file(path, has header=True) :
Returns:
A mapping from a (cbsa, state, year) tuple to a list of (lat, long,
companyname, datefirstinv) tuples.
ret = defaultdict (deque)
with open (path) as f:

HCA.py 7/16/2022

if has header:
next (f)
for line in f:
line=line.rstrip('\r\n")
parts = line.split('\t'")
cbsa, year, lat, lon=parts[0:4]
ret[(cbsa, year)].append((lat, lon))
return ret

#Main body
start = timer ()
print ('Parsing ' + INPUT FILENAME)
res = parse colevel file (INPUT FILENAME)
print ('Found {} unique (city, state, year) tuples in {}'.format (len(res),
INPUT_FILENAME))
print ('Generating output in {}'.format (OUTPUT_ FILENAME))
with open (OUTPUT FILENAME, 'w', newline='') as c:
print ("cbsal\tyear\tlayer no\tcluster no\tlat\tlon",file=c)
model=AgglomerativeClustering (distance threshold=0, n_clusters=None)
for key in res.keys{():
keystr="\t".join (map(str, key)) #Note that this has an issue when key
is already a str!
data = reslkey]
print ('Agglomerating ' + str(key) + ' with ' + str(len(data)) + '
points"')
points=[(float (x),float(y)) for (x,y) in data]
obs list=[(float(x),float(y)) for (x,y) in datal
model.fit (points)
schedule=get schedule (model)
for layer no in dict.keys (schedule):
for i in range(0,len(obs list)):
obs str="\t".join (map (str,obs list[i]))
cluster no=int (schedule[layer no] [i])

print (keystr, "\t",layer no,"\t",cluster no,"\t",obs str,file=c
timediff = timer()-start
print ('Run Completed in',timediff)
print ('Thank Ed and his former McNair minions.')
No warrantee whatsoever.

