hierarchy.py 7/16/2022

nmoan

Hierarchical clustering (:mod: scipy.cluster.hierarchy’)

currentmodule:: scipy.cluster.hierarchy

These functions cut hierarchical clusterings into flat clusterings
or find the roots of the forest formed by a cut by providing the flat
cluster ids of each observation.

autosummary: :
:toctree: generated/

fcluster
fclusterdata
leaders

These are routines for agglomerative clustering.

autosummary: :
:toctree: generated/

linkage
single
complete
average
weighted
centroid
median
ward

These routines compute statistics on hierarchies.

autosummary::
:toctree: generated/

cophenet

from mlab linkage
inconsistent
maxinconsts
maxdists

maxRstat

to mlab linkage

Routines for visualizing flat clusters.

autosummary: :
:toctree: generated/

dendrogram

These are data structures and routines for representing hierarchies as
tree objects.

autosummary::
:toctree: generated/

ClusterNode

leaves list

to _tree

cut tree
optimal leaf ordering

hierarchy.py 7/16/2022

These are predicates for checking the validity of linkage and
inconsistency matrices as well as for checking isomorphism of two
flat cluster assignments.

autosummary::
:toctree: generated/

is_valid im
is_valid linkage
is_isomorphic
is_monotonic
correspond
num_obs linkage

Utility routines for plotting:

autosummary::
:toctree: generated/

set link color palette

References

[1] "Statistics toolbox." API Reference Documentation. The MathWorks.
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/.
Accessed October 1, 2007.

[2] "Hierarchical clustering." API Reference Documentation.

The Wolfram Research, Inc.
https://reference.wolfram.com/language/HierarchicalClustering/tutorial/
HierarchicalClustering.html.

Accessed October 1, 2007.

[3] Gower, JC and Ross, GJS. "Minimum Spanning Trees and Single Linkage
Cluster Analysis." Applied Statistics. 18(1): pp. 54--64. 1969.

[4] Ward Jr, JH. "Hierarchical grouping to optimize an objective
function." Journal of the American Statistical Association. 58(301):
pp. 236--44. 1963.

[5] Johnson, SC. "Hierarchical clustering schemes." Psychometrika.
32(2): pp. 241--54. 19¢66.

[6] Sneath, PH and Sokal, RR. "Numerical taxonomy." Nature. 193: pp.
855--60. 1962.

[7] Batagelj, V. "Comparing resemblance measures." Journal of
Classification. 12: pp. 73--90. 1995.

[8] Sokal, RR and Michener, CD. "A statistical method for evaluating
systematic relationships." Scientific Bulletins. 38(22):
pp. 1409--38. 1958.

[9] Edelbrock, C. "Mixture model tests of hierarchical clustering
algorithms: the problem of classifying everybody." Multivariate
Behavioral Research. 14: pp. 367--84. 1979.

[10] Jain, A., and Dubes, R., "Algorithms for Clustering Data."
Prentice-Hall. Englewood Cliffs, NJ. 1988.

[11] Fisher, RA "The use of multiple measurements in taxonomic
problems." Annals of Eugenics, 7(2): 179-188. 1936

hierarchy.py 7/16/2022

* MATLAB and MathWorks are registered trademarks of The MathWorks, Inc.

* Mathematica is a registered trademark of The Wolfram Research, Inc.

nmoan

from future import division, print function, absolute import
Copyright (C) Damian Eads, 2007-2008. New BSD License.
hierarchy.py (derived from cluster.py, http://scipy-cluster.googlecode.com)

Author: Damian Eads
Date: September 22, 2007

Copyright (c) 2007, 2008, Damian Eads
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
- Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

S oo e S o o o o S o o o o S o o o o e o o o o oE o o o e e o o o e e

Changes to this code were made by Ed Egan, 2022. Copyleft.
Addition 1: lines 188 to 207
Addition 1: lines 734 to 743

+ e

import warnings
import bisect
from collections import deque

import numpy as np
from . import hierarchy, optimal leaf ordering
import scipy.spatial.distance as distance

from scipy. lib.six import string types
from scipy. lib.six import xrange

HHfHH A H A FHH S Begin Addition (section 1) ########4#4%H444#44

_DISTANCE FILENAME = r'E:\projects\hca\CBSARandom6Locs2006Lookup.txt' #Should
be passed in.

hierarchy.py 7/16/2022

_DISTANCES={}
with open(DISTANCE FILENAME) as f:
next (f) #loose the header row
for line in f:
line=line.rstrip('\r\n")
parts = line.split('\t'")
source=(float (parts[0]), float (parts[1l]))
dest=(float (parts([2]),float (parts[3]))
dist=parts[4]
if source in DISTANCES:
_DISTANCES [source] [dest]=dist
else:
_DISTANCES [source]={}
_DISTANCES [source] [dest]=dist

HHfHH A HRF AR HEHH End Addition (section 1) ##########4#H444#44

_LINKAGE METHODS = {'single': 0, 'complete': 1, 'average': 2, 'centroid': 3,
'median': 4, 'ward': 5, 'weighted': 6}
_EUCLIDEAN METHODS = ('centroid', 'median', 'ward')

all = ['ClusterNode', 'average', 'centroid', 'complete', 'cophenet',
'correspond', 'cut tree', 'dendrogram', 'fcluster',6 'fclusterdata',
'from mlab linkage', 'inconsistent', 'is isomorphic',
'is monotonic', 'is valid im', 'is valid linkage', 'leaders',
'leaves list', 'linkage', 'maxRstat', 'maxdists', 'maxinconsts',
'median', 'num obs linkage', 'optimal leaf ordering',
'set link color palette', 'single', 'to mlab linkage', 'to tree',
'ward', 'weighted', 'distance']

class ClusterWarning (UserWarning) :
pass

def warning(s):
warnings.warn ('scipy.cluster: %s' % s, ClusterWarning, stacklevel=3)

def copy array if base present(a):

KKIRT

Copy the array if its base points to a parent array.
nmoan
if a.base is not None:
return a.copy()
elif np.issubsctype(a, np.float32):
return np.array(a, dtype=np.double)
else:
return a

def copy arrays if base present(T):
nmoan
Accept a tuple of arrays T. Copies the array T[i] if its base array
points to an actual array. Otherwise, the reference is just copied.
This is useful if the arrays are being passed to a C function that
does not do proper striding.
nmoan
1 = [copy array if base present(a) for a in T]
return 1

def randdm(pnts) :

nmoan

Generate a random distance matrix stored in condensed form.

hierarchy.py 7/16/2022

Parameters
pnts : int
The number of points in the distance matrix. Has to be at least 2.

Returns

A “'pnts * (pnts - 1) / 2°° sized vector is returned.
mworw
if pnts >= 2:
D = np.random.rand (pnts * (pnts - 1) / 2)
else:
raise ValueError ("The number of points in the distance matrix "
"must be at least 2.")
return D

def single(y):

nmoan

Perform single/min/nearest linkage on the condensed distance matrix "~y °

Parameters
y : ndarray
The upper triangular of the distance matrix. The result of

“pdist’’ is returned in this form.
Returns
Z : ndarray

The linkage matrix.

linkage: for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist : pairwise distance metrics

nmoan

return linkage(y, method='single', metric='euclidean')

def complete(y):

nmoan

Perform complete/max/farthest point linkage on a condensed distance
matrix.

Parameters
y : ndarray
The upper triangular of the distance matrix. The result of

“pdist’’ is returned in this form.
Returns
Z : ndarray

A linkage matrix containing the hierarchical clustering. See
the “linkage’™ function documentation for more information
on its structure.

linkage: for advanced creation of hierarchical clusterings.

5

hierarchy.py

def

def

def

scipy.spatial.

nmoan

return linkage (y,

average (y) :

nmoan

7/16/2022

distance.pdist pairwise distance metrics

method='complete', metric='euclidean')

Perform average/UPGMA linkage on a condensed distance matrix.

Parameters

y : ndarray

The upper
Tlpdist e
Returns
Z : ndarray
A linkage
“linkage’
See Also
linkage:

scipy.spatial.

nmoan

return linkage (y,

weighted(y) :

nmoan

triangular of the distance matrix. The result of

is returned in this form.

matrix containing the hierarchical clustering. See

for more information on its structure.

for advanced creation of hierarchical clusterings.

distance.pdist pairwise distance metrics

method="'average', metric='euclidean')

Perform weighted/WPGMA linkage on the condensed distance matrix.

See “linkage’
structure and

Parameters

y : ndarray

The upper
Tlpdist e
Returns
Z : ndarray
A linkage
“linkage’
See Also
linkage for

scipy.spatial.

nmoan

return linkage (y,

centroid(y) :

nmoan

for more information on the return
algorithm.

triangular of the distance matrix. The result of

is returned in this form.

matrix containing the hierarchical clustering. See

for more information on its structure.

advanced creation of hierarchical clusterings.
distance.pdist pairwise distance metrics

method="'weighted', metric='euclidean')

Perform centroid/UPGMC linkage.

See “linkage’

for more information on the input matrix,

6

hierarchy.py
return structure, and algorithm.
The following are common calling conventions:
1. "°Z = centroid(y)

Performs centroid/UPGMC linkage on the condensed distance
matrix "~y

2. °°Z = centroid(X) °

Performs centroid/UPGMC linkage on the observation matrix
using Euclidean distance as the distance metric.

Parameters

y : ndarray
A condensed distance matrix. A condensed
distance matrix is a flat array containing the upper
triangular of the distance matrix. This is the form that
Tpdist’ ' returns. Alternatively, a collection of
m observation vectors in n dimensions may be passed as
a m by n array.

Returns

Z : ndarray

A linkage matrix containing the hierarchical clustering. See

the “linkage’™ function documentation for more information
on its structure.

linkage: for advanced creation of hierarchical clusterings.

nmoan

return linkage(y, method='centroid', metric='euclidean')

def median (y) :

Perform median/WPGMC linkage.

See "linkage’ for more information on the return structure
and algorithm.

The following are common calling conventions:

1. "°Z = median(y) °

7/16/2022

Performs median/WPGMC linkage on the condensed distance matrix

'y . See "“linkage’ " for more information on the return
structure and algorithm.

2. 7772 = median (X)

Performs median/WPGMC linkage on the observation matrix ~ X °

using Euclidean distance as the distance metric. See “linkage’

for more information on the return structure and algorithm.

Parameters
y : ndarray
A condensed distance matrix. A condensed

hierarchy.py

def

def

distance matrix is a flat array containing the upper
triangular of the distance matrix. This is the form that
“pdist’ ' returns. Alternatively, a collection of

m observation vectors in n dimensions may be passed as

a m by n array.

Returns

Z : ndarray
The hierarchical clustering encoded as a linkage matrix.

See Also

linkage: for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist : pairwise distance metrics

nmoan

return linkage(y, method='median', metric='euclidean')

ward(y) :

Perform Ward's linkage on a condensed distance matrix.

See "linkage’ for more information on the return structure
and algorithm.

The following are common calling conventions:

1. "°Z = ward(y)

Performs Ward's linkage on the condensed distance matrix "~y °

2. 772 = ward(X) °
Performs Ward's linkage on the observation matrix °~ "X ' using
Euclidean distance as the distance metric.

Parameters

y : ndarray
A condensed distance matrix. A condensed
distance matrix is a flat array containing the upper
triangular of the distance matrix. This is the form that
“pdist’ ' returns. Alternatively, a collection of
m observation vectors in n dimensions may be passed as
a m by n array.

Z : ndarray
The hierarchical clustering encoded as a linkage matrix. See
"linkage’™ for more information on the return structure and
algorithm.

See Also

linkage: for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist : pairwise distance metrics

nmoan

return linkage(y, method='ward', metric='euclidean')

7/16/2022

linkage (y, method='single', metric='euclidean',6 optimal ordering=False) :

nmon

hierarchy.py 7/16/2022
Perform hierarchical/agglomerative clustering.

The input y may be either a 1d condensed distance matrix
or a 2d array of observation vectors.

If v is a 1d condensed distance matrix,

then y must be a :math: \\binom{n} {2} sized

vector where n is the number of original observations paired
in the distance matrix. The behavior of this function is very
similar to the MATLAB linkage function.

A :math: (n-1)" by 4 matrix ~"Z ° 1is returned. At the
:math: i -th iteration, clusters with indices ~"Z[i, 0] " and
“Z[1, 1] " are combined to form cluster :math: n + i . A
cluster with an index less than :math: n° corresponds to one of
the :math: n° original observations. The distance between
clusters "~ "Z[i, 0] and "~ "Z[i, 1] is given by " "Z[i, 2] . The
fourth value "~ "Z[i, 3] represents the number of original
observations in the newly formed cluster.

The following linkage methods are used to compute the distance
:math: "d(s, t) between two clusters :math: s and

:math: t°. The algorithm begins with a forest of clusters that
have yet to be used in the hierarchy being formed. When two
clusters :math: s’ and :math: t° from this forest are combined
into a single cluster :math: u’, :math: s and :math: t° are
removed from the forest, and :math: u’ is added to the

forest. When only one cluster remains in the forest, the algorithm
stops, and this cluster becomes the root.

A distance matrix is maintained at each iteration. The ~°d[i,j] °
entry corresponds to the distance between cluster :math: i and
:math: j° in the original forest.

At each iteration, the algorithm must update the distance matrix
to reflect the distance of the newly formed cluster u with the
remaining clusters in the forest.

Suppose there are :math: |u| original observations

:math: u[0], \\ldots, ul[|ul-1]" in cluster :math: u’ and
:math: " |v| original objects :math: v[0], \\ldots, vI[]|v|-1]" in
cluster :math: v . Recall :math: s’ and :math: t° are

combined to form cluster :math: u . Let :math: v’ be any

remaining cluster in the forest that is not :math: u’.

The following are methods for calculating the distance between the
newly formed cluster :math: u’ and each :math: v .

* method='single' assigns

math::
d(u,v) = \\min(dist(ulil,vI[j]))

for all points :math: 1" in cluster :math: u’ and
:math: j° in cluster :math: v’ . This is also known as the
Nearest Point Algorithm.

* method='complete' assigns

math::
d(u, v) = \\max(dist(u[i],v[]]))

for all points :math: 1" in cluster u and :math: 3 in
cluster :math: v'. This is also known by the Farthest Point

9

hierarchy.py 7/16/2022
Algorithm or Voor Hees Algorithm.
* method='average' assigns

math::

d(u,v) = \\sum_{ij} \\frac{d(u([i], vI[]])}
{Clul*|vl)}

for all points :math: 1" and :math: j° where :math: |u]|’

and :math: |v]| are the cardinalities of clusters :math: u’

and :math: v, respectively. This is also called the UPGMA

algorithm.

* method='weighted' assigns

math::
d(u,v) = (dist(s,v) + dist(t,v))/2

where cluster u was formed with cluster s and t and v
is a remaining cluster in the forest. (also called WPGMA)

* method='centroid' assigns

math::
dist(s,t) = |lc_s-c_tl||_2

where :math: c s’ and :math: c_t' are the centroids of
clusters :math: s’ and :math: t ', respectively. When two
clusters :math: s’ and :math: t° are combined into a new
cluster :math: u’, the new centroid is computed over all the
original objects in clusters :math: s’ and :math: t . The
distance then becomes the Euclidean distance between the
centroid of :math: u’ and the centroid of a remaining cluster
:math: v’ in the forest. This is also known as the UPGMC
algorithm.

* method="'median' assigns :math: d(s,t) 1like the "~ “centroid’ "
method. When two clusters :math: s’ and :math: t° are combined
into a new cluster :math: u’, the average of centroids s and t
give the new centroid :math: u . This is also known as the
WPGMC algorithm.

* method='ward' uses the Ward variance minimization algorithm.

The new entry :math: d(u,v) is computed as follows,
math::
d(u,v) = \\sgrt{\\frac{|v|+|s]}

{T}d(v,s) "2
+ \\frac{|v|+|t]}

{T}d(v,t)"2
- \\frac{|v]}

{T}d(s,t) "2}

where :math: u’ is the newly Jjoined cluster consisting of
clusters :math: s and :math: t°, :math: v’ is an unused
cluster in the forest, :math: T=|v|+|s|+|t| , and

:math: |*|° is the cardinality of its argument. This is also
known as the incremental algorithm.

Warning: When the minimum distance pair in the forest is chosen, there
may be two or more pairs with the same minimum distance. This
implementation may choose a different minimum than the MATLAB

version.

10

hierarchy.py 7/16/2022

Parameters

y : ndarray
A condensed distance matrix. A condensed distance matrix
is a flat array containing the upper triangular of the distance
matrix.
This is the form that "~ "pdist’ returns. Alternatively, a collection
of
:math: 'm’ observation vectors in :math: ' n° dimensions may be passed as
an :math: m" by :math: n’ array. All elements of the condensed
distance
matrix must be finite, i.e. no NaNs or infs.

method : str, optional
The linkage algorithm to use. See the "~ “Linkage Methods® " section
below
for full descriptions.

metric : str or function, optional
The distance metric to use in the case that y is a collection of
observation vectors; ignored otherwise. See the "~ “pdist™°
function for a list of valid distance metrics. A custom distance
function can also be used.

optimal ordering : bool, optional
If True, the linkage matrix will be reordered so that the distance
between successive leaves is minimal. This results in a more intuitive
tree structure when the data are visualized. defaults to False,
because
this algorithm can be slow, particularly on large datasets [2] . See
also the “optimal leaf ordering’ function.

versionadded:: 1.0.0

Returns
Z : ndarray
The hierarchical clustering encoded as a linkage matrix.

1. For method 'single' an optimized algorithm based on minimum spanning
tree is implemented. It has time complexity :math: 0(n"2) .

For methods 'complete', 'average', 'weighted' and 'ward' an algorithm
called nearest-neighbors chain is implemented. It also has time
complexity :math: O(n"2) .

For other methods a naive algorithm is implemented with :math: 0(n”"3) "
time complexity.

All algorithms use :math: O0(n"2) memory.

Refer to [1] for details about the algorithms.

2. Methods 'centroid', 'median' and 'ward' are correctly defined only if
Euclidean pairwise metric is used. If "y 1is passed as precomputed
pairwise distances, then it is a user responsibility to assure that
these distances are in fact Euclidean, otherwise the produced result
will be incorrect.

See Also

scipy.spatial.distance.pdist : pairwise distance metrics

References
[1] Daniel Mullner, "Modern hierarchical, agglomerative clustering
algorithms", :arXiv: 1109.2378v1".
[2] Ziv Bar-Joseph, David K. Gifford, Tommi S. Jaakkola, "Fast optimal
leaf ordering for hierarchical clustering", 2001. Bioinformatics

11

hierarchy.py 7/16/2022
https://doi.org/10.1093/bioinformatics/17.suppl 1.S522

Examples

>>> from scipy.cluster.hierarchy import dendrogram, linkage
>>> from matplotlib import pyplot as plt

>>> X = [[i1] for i in [2, 8, 0, 4, 1, 9, 9, 0]]

>>> 7 = linkage (X, 'ward')
>>> fig = plt.figure(figsize=(25, 10))
>>> dn = dendrogram(Z)

>>> 7 = linkage (X, 'single')
>>> fig = plt.figure(figsize=(25, 10))
>>> dn = dendrogram(Z)
>>> plt.show ()
if method not in LINKAGE METHODS:
raise ValueError ("Invalid method: {0}".format (method))

y = _convert to double(np.asarray(y, order='c'))
if y.ndim ==
distance.is valid y(y, throw=True, name='y')
[yl] = copy arrays if base present([y])
elif y.ndim ==
if method in EUCLIDEAN METHODS and metric != 'euclidean':

raise ValueError ("Method '{0}' requires the distance metric "
"to be Euclidean".format (method))
if y.shape[0] == y.shape[l] and np.allclose(np.diag(y), 0):
if np.all(y >= 0) and np.allclose(y, y.T):
_warning ('The symmetric non-negative hollow observation '
'matrix looks suspiciously like an uncondensed '
'distance matrix')

#y = distance.pdist(y, metric)
HHAEHFEHEFEHEHHHEHS Begin Addition (section 2) #######4H###SHSHEHS

points=[tuple (row) for row in y]
sqform=np.zeros ((len(points), len (points)))
for i,source in enumerate (points) :
for j,dest in enumerate (points):
sgform([i, j]=_ DISTANCES [source] [dest]
y=distance.squareform(sgform)

HHfHH A HRFF A EHH End Addition (section 2) ##########4#H444#44

else:
raise ValueError ("'y must be 1 or 2 dimensional.")

if not np.all(np.isfinite(y)):
raise ValueError ("The condensed distance matrix must contain only "
"finite values.")

n = int (distance.num obs_ y(y))

method code = LINKAGE METHODS [method]

if method == 'single':
result = hierarchy.mst single linkage(y, n)

elif method in ['complete', 'average', 'weighted', 'ward']:
result = hierarchy.nn chain(y, n, method code)

else:
result = hierarchy.fast linkage(y, n, method code)

12

hierarchy.py 7/16/2022

if optimal ordering:

return optimal leaf ordering(result, y)

else:

return result

class ClusterNode:

nmoan

A tree node class for representing a cluster.

Leaf nodes correspond to original observations, while non-leaf nodes
correspond to non-singleton clusters.

The

"to_tree’ function converts a matrix returned by the linkage

function into an easy-to-use tree representation.

All parameter names are also attributes.
Parameters
id int
The node id.
left ClusterNode instance, optional

The left child tree node.

right : ClusterNode instance, optional

dist

The right child tree node.
float, optional
Distance for this cluster in the linkage matrix.

count : int, optional

The number of samples in this cluster.

See Also

to tree : for converting a linkage matrix °~'Z " into a tree object.
nmoan

def init (self, id, left=None, right=None, dist=0, count=1):

def

if id < 0:
raise ValueError ('The id must be non-negative.')
if dist < 0:
raise ValueError ('The distance must be non-negative.')
if (left is None and right is not None) or \
(left is not None and right is None) :
raise ValueError ('Only full or proper binary trees are permitted.'
' This node has one child.')
if count < 1:
raise ValueError ('A cluster must contain at least one original '

'observation.')

self.id = id
self.left = left
self.right = right
self.dist = dist
if self.left is None:

self.count = count
else:

self.count = left.count + right.count

1t (self, node):
if not isinstance (node, ClusterNode) :
raise ValueError ("Can't compare ClusterNode "
"to type {}".format (type(node)))
return self.dist < node.dist

13

hierarchy.py 7/16/2022

def gt (self, node):
if not isinstance (node, ClusterNode) :
raise ValueError ("Can't compare ClusterNode "
"to type {}".format (type(node)))

return self.dist > node.dist

def eq_ (self, node):
if not isinstance (node, ClusterNode) :
raise ValueError ("Can't compare ClusterNode "
"to type {}".format (type(node)))
return self.dist == node.dist

def get id(self):

nmoan

The identifier of the target node.

For "0 <= 1 < n 7, "1 corresponds to original observation 1i.

For "'n <= i1 < 2n-1"", "i° corresponds to non-singleton cluster formed
at iteration "~ i-n"

Returns

id : int

The identifier of the target node.

nmoan

return self.id

def get count (self):

nun

The number of leaf nodes (original observations) belonging to
the cluster node nd. If the target node is a leaf, 1 is
returned.

Returns

get count : int
The number of leaf nodes below the target node.

return self.count
def get left (self):

nmoan

Return a reference to the left child tree object.

Returns

left : ClusterNode
The left child of the target node. If the node is a leaf,
None is returned.

return self.left
def get right (self):

Return a reference to the right child tree object.

Returns

right : ClusterNode
The left child of the target node. If the node is a leaf,

14

hierarchy.py 7/16/2022

def

def

None is returned.

return self.right
is_leaf (self):

Return True if the target node is a leaf.

Returns

leafness : bool
True if the target node is a leaf node.

nmoan

return self.left is None

pre order (self, func=(lambda x: x.id)):

nun

Perform pre-order traversal without recursive function calls.
When a leaf node is first encountered, ~ func 1s called with
the leaf node as its argument, and its result is appended to
the list.

For example, the statement::

ids = root.pre order (lambda x: x.id)

returns a list of the node ids corresponding to the leaf nodes
of the tree as they appear from left to right.

Parameters

func : function
Applied to each leaf ClusterNode object in the pre-order
traversal.
Given the "1 -th leaf node in the pre-order traversal "~ 'n[i] 7,
the result of "~ “func(n[i]) ~ 1s stored in "~ "L[i] . If not

provided, the index of the original observation to which the node
corresponds is used.

Returns
L : list
The pre-order traversal.

nmoan

Do a preorder traversal, caching the result. To avoid having to do
recursion, we'll store the previous index we've visited in a vector.
n = self.count
curNode = [None] * (2 * n)
lvisited = set ()
rvisited = set ()
curNode[0] = self
k=0
preorder = []
while k >= 0:
nd = curNode [k]
ndid = nd.id
if nd.is_leaf():
preorder.append (func (nd))
k =%k -1

15

hierarchy.py 7/16/2022

else:
if ndid not in lvisited:
curNode[k + 1] = nd.left
lvisited.add (ndid)
k =%k + 1
elif ndid not in rvisited:
curNode[k + 1] = nd.right
rvisited.add (ndid)
k =%k + 1
If we've visited the left and right of this non-leaf
node already, go up in the tree.
else:
k =%k -1

return preorder

_cnode_bare ClusterNode (0)
_cnode_type = type (ClusterNode)

def order cluster tree(Z):

nmoan

Return clustering nodes in bottom-up order by distance.

Parameters
Z : scipy.cluster.linkage array
The linkage matrix.

Returns
nodes : list
A list of ClusterNode objects.
q = deque ()
tree = to_tree(Z)
g.append (tree)
nodes = []

while g:
node = g.popleft ()
if not node.is leaf():
bisect.insort left (nodes, node)
g.append (node.get right())
g.append (node.get left())
return nodes

def cut tree(Z, n_clusters=None, height=None) :

nmoan

Given a linkage matrix Z, return the cut tree.

Parameters

Z : scipy.cluster.linkage array
The linkage matrix.

n clusters : array like, optional

Number of clusters in the tree at the cut point.

height : array like, optional
The height at which to cut the tree. Only possible for ultrametric
trees.

Returns

16

hierarchy.py 7/16/2022

cutree : array

An array indicating group membership at each agglomeration step.

I.e.,

for a full cut tree, in the first column each data point is in its own
cluster. At the next step, two nodes are merged. Finally all
singleton and non-singleton clusters are in one group. If
‘'n_clusters’

or “height® is given, the columns correspond to the columns of
‘'n_clusters’ or “height .

Examples

>>>
>>>
>>>
>>>
>>>
>>>

array ([[0,

nmoan

nobs

from scipy import cluster

np.random. seed (23)

X = np.random.randn (50, 4)

7 = cluster.hierarchy.ward (X)

cutree = cluster.hierarchy.cut tree(Z, n clusters=[5, 10])
cutree[:10]

~ ~

~

~ ~

~

~
OO U ON D WNREO
PR
LN S S S S S S S S

WP OoONDWWN
~

~

~

= num_obs linkage (Z)

nodes = order cluster tree(Z)

if height is not None and n_clusters is not None:

raise ValueError ("At least one of either height or n clusters "
"must be None")

elif height is None and n_clusters is None: # return the full cut tree

cols idx = np.arange (nobs)

elif height is not None:

heights = np.array([x.dist for x in nodes])

cols idx = np.searchsorted(heights, height)
else:

cols idx = nobs - np.searchsorted(np.arange (nobs), n_clusters)
try:

n cols = len(cols idx)
except TypeError: # scalar

n cols =1

cSls_idx = np.array([cols_idx])

groups = np.zeros((n_cols, nobs), dtype=int)
last group = np.arange (nobs)
if 0 in cols_idx:

for

groups[0] = last group

i, node in enumerate (nodes) :
idx = node.pre_ order /()
this group = last group.copy ()

this group[idx] = last group[idx].min()
this group[this group > last group[idx].max()] -=1
if 1 + 1 in cols_ idx:
groups [np.where(i + 1 == cols_idx) [0]] = this group

last _group = this group

17

hierarchy.py 7/16/2022

def

return groups.T

to tree(Z, rd=False):

nmoan

Convert a linkage matrix into an easy-to-use tree object.
The reference to the root “ClusterNode object is returned (by default).

Each "ClusterNode object has a "~“left™", "~ “right ", ~‘dist”™", "~ id" 7,
and "~ “count’ attribute. The left and right attributes point to
ClusterNode objects that were combined to generate the cluster.

If both are None then the "ClusterNode object is a leaf node, its count
must be 1, and its distance is meaningless but set to 0.

*Note: This function is provided for the convenience of the library
user. ClusterNodes are not used as input to any of the functions in this
library.*

Parameters
Z : ndarray
The linkage matrix in proper form (see the “linkage’
function documentation).
rd : bool, optional
When False (default), a reference to the root "ClusterNode object is

returned. Otherwise, a tuple "~ (r, d) ~ 1is returned. “~"r ° is a
reference to the root node while ""d’" is a list of "ClusterNode’
objects - one per original entry in the linkage matrix plus entries
for all clustering steps. If a cluster id is

less than the number of samples "~ 'n° " in the data that the linkage
matrix describes, then it corresponds to a singleton cluster (leaf
node) .

See "linkage’ for more information on the assignment of cluster ids
to clusters.

tree : ClusterNode or tuple (ClusterNode, list of ClusterNode)
If ""rd " is False, a "ClusterNode .
If “"rd" " is True, a list of length "~ "2*n - 1°°, with "~ 'n° " the number
of samples. See the description of "rd above for more details.

See Also

linkage, is_valid linkage, ClusterNode

Examples

>>> from scipy.cluster import hierarchy

>>> x = np.random.rand(10) .reshape (5, 2)

>>> 7 hierarchy.linkage (x)

>>> hierarchy.to tree (Z2)
<scipy.cluster.hierarchy.ClusterNode object at
>>> rootnode, nodelist = hierarchy.to tree(Z, rd=True)
>>> rootnode
<scipy.cluster.hierarchy.ClusterNode object at
>>> len (nodelist)

9

nmoan

Z = np.asarray(Z, order='c')
is_valid linkage(Z, throw=True, name='Z")

18

hierarchy.py 7/16/2022

def

Number of original objects is equal to the number of rows minus 1.
n = Z.shape[0] + 1

Create a list full of None's to store the node objects
d = [None] * (n * 2 - 1)

Create the nodes corresponding to the n original objects.
for i in xrange (0, n):
d[i] = ClusterNode (1)

nd = None

for i in xrange(0, n - 1):
fi = int(z[i, 0])
f3 = int(Z2[1i, 11)
if fi > 1 + n:
raise ValueError (('Corrupt matrix Z. Index to derivative cluster '
'is used before it is formed. See row %d, '
'column 0') % f1i)
if £f3 > 1 + n:
raise ValueError (('Corrupt matrix Z. Index to derivative cluster '
'is used before it is formed. See row %d, '

'column 1') % f3)
nd = ClusterNode(i + n, d[fi], d[f3j], Z[i, 2])
~id ~ left ~ right » dist
if z[i, 3] != nd.count:
raise ValueError (('Corrupt matrix Z. The count Z[%d,3] is '
'incorrect.') % 1)
d[n + 1] = nd
if rd:
return (nd, d)
else:

return nd

optimal leaf ordering(Z, y, metric='euclidean'):

nmoan

Given a linkage matrix Z and distance, reorder the cut tree.

Parameters

Z : ndarray
The hierarchical clustering encoded as a linkage matrix. See
"linkage’ for more information on the return structure and
algorithm.

y : ndarray
The condensed distance matrix from which Z was generated.
Alternatively, a collection of m observation vectors in n
dimensions may be passed as a m by n array.

metric : str or function, optional
The distance metric to use in the case that y is a collection of
observation vectors; ignored otherwise. See the "~ “pdist™°
function for a list of valid distance metrics. A custom distance
function can also be used.

Returns

Z_ ordered : ndarray
A copy of the linkage matrix Z, reordered to minimize the distance
between adjacent leaves.

Examples

19

hierarchy.py

def

def

def

>>> from scipy.cluster import hierarchy

>>> np.random.seed (23)

>>> X = np.random.randn(10,10)

>>> 7 = hierarchy.ward (X)

>>> hierarchy.leaves list (Z)

array ([0, 5, 3, 9, 6, 8, 1, 4, 2, 7], dtype=int32)

>>> hierarchy.leaves list (hierarchy.optimal leaf ordering(Z,
array([3, 9, 0, 5, 8, 2, 7, 4, 1, 6], dtype=int32)

nmoan

Z = np.asarray(Z, order='c')
is_valid linkage(Z, throw=True, name='Z")

y = _convert to double(np.asarray(y, order='c'))
if y.ndim ==
distance.is valid y(y, throw=True, name='y')
[yl] = copy arrays if base present([y])
elif y.ndim ==
if y.shape[0] == y.shape[l] and np.allclose(np.diag(y),

if np.all(y >= 0) and np.allclose(y, y.T):

X))

0):

7/16/2022

_warning ('The symmetric non-negative hollow observation '
'matrix looks suspiciously like an uncondensed '

'distance matrix')
y = distance.pdist(y, metric)
else:
raise ValueError (" 'y must be 1 or 2 dimensional.")

if not np.all(np.isfinite(y)):

raise ValueError ("The condensed distance matrix must contain only "

"finite values.")

return optimal leaf ordering.optimal leaf ordering(Z, vy)

_convert to bool (X):

if X.dtype != bool:
X = X.astype (bool)

if not X.flags.contiguous:
X = X.copy ()

return X

_convert to double (X) :
if X.dtype != np.double:
X = X.astype (np.double)
if not X.flags.contiguous:
X = X.copy ()
return X

cophenet (Z, Y=None) :

nmoan

Calculate the cophenetic distances between each observation
the hierarchical clustering defined by the linkage "~ Z°°

Suppose " "p and g " are original observations in

disjoint clusters “~"s ° and " t°°, respectively and
"'s™" and "t are joined by a direct parent cluster
"u’ " . The cophenetic distance between observations

i and Jj is simply the distance between
clusters “~"s’° and "t "

20

in

hierarchy.py

def

Parameters
Z : ndarray
The hierarchical clustering encoded as an array
(see "linkage’ function).
Y : ndarray (optional)
Calculates the cophenetic correlation coefficient "¢ of a
hierarchical clustering defined by the linkage matrix “Z°
of a set of :math: ' n° observations in :math: m’
dimensions. Y 1is the condensed distance matrix from which
"Z° was generated.

Returns
c : ndarray
The cophentic correlation distance (if "Y' is passed).
d : ndarray
The cophenetic distance matrix in condensed form. The
:math: ij° th entry is the cophenetic distance between
original observations :math: i’ and :math: j .

nmoan

Z = np.asarray(Z, order='c')

is_valid linkage(Z, throw=True, name='Z")
Zs = Z.shape

n = 7s[0] + 1

zz = np.zeros((n * (n-1)) // 2, dtype=np.double)

Since the C code does not support striding using strides.
The dimensions are used instead.

Z = _convert to double(Z)

_hierarchy.cophenetic distances(Z, zz, int(n))
if Y is None:
return zz

Y = np.asarray (Y, order='c'")
distance.is valid y (Y, throw=True, name='Y'")

z = zz.mean ()

y = Y.mean ()

Yy =Y - vy

72z = zz - Z

numerator = (Yy * Zz)

denomA = Yy**2

denomB = Zz**2

¢ = numerator.sum() / np.sqrt((denomA.sum() * denomB.sum()))

return (c, zz)

inconsistent (Z, d=2):

nun
r

Calculate inconsistency statistics on a linkage matrix.

Parameters

Z : ndarray
The :math: (n-1)" by 4 matrix encoding the linkage (hierarchical
clustering). See "linkage’ documentation for more information on its
form.

d : int, optional

The number of links up to "d° levels below each non-singleton cluster.

Returns

21

7/16/2022

hierarchy.py 7/16/2022

def

R : ndarray

A :math: (n-1) " by 4 matrix where the i 'th row contains the link
statistics for the non-singleton cluster ~"i°° . The link statistics
are

computed over the link heights for links :math: d’ levels below the
cluster “"i°°. ""R[1,0] " and " "RJ[i,1] " are the mean and standard
deviation of the link heights, respectively; "~ "R[i,2] " is the number
of links included in the calculation; and "~ "R[i,3] 1is the

inconsistency coefficient,

math:: \frac{\mathtt{z[i,2]} - \mathtt{R[i,0]1}} {R[i,1]}

This function behaves similarly to the MATLAB(TM) ~ "inconsistent
function.

Examples

>>> from scipy.cluster.hierarchy import inconsistent, linkage
>>> from matplotlib import pyplot as plt

>>> X = [[i] for i in [2, 8, 0, 4, 1, 9, 9, 0]]

>>> 7 = linkage (X, 'ward')

>>> print (Z)

[[5. 6. 0. 2.]
[2. 7. 0. 2.]
[0. 4. 1. 2.]
[1. 8. 1.15470054 3.]
[9. 10. 2.12132034 4.]
[3. 12. 4.11096096 5.]
[11. 13. 14.07183949 8.]
>>> inconsistent (Z)
array ([[O. , 0. , 1. , 0. 1,
[0. , 0. , 1. , 0. 1,
[1. , 0. , 1. , 0. 1,
[0.57735027, 0.81649658, 2. , 0.707106781,
[1.04044011, 1.06123822, 3. , 1.01850858],
[3.11614065, 1.40688837, 2. , 0.707106781,
[6.44583366, ©6.76770586, 3. , 1.1268228811)
Z = np.asarray(Z, order='c')

Zs = Z.shape
is_valid linkage(Z, throw=True, name='Z")
if (not d == np.floor(d)) or d < O:
raise ValueError ('The second argument d must be a nonnegative '
'integer value.')

Since the C code does not support striding using strides.
The dimensions are used instead.
[Z] = copy arrays if base present([Z])

= Zs[0] + 1

n
R np.zeros((n - 1, 4), dtype=np.double)

_hierarchy.inconsistent(Z, R, int(n), int(d))
return R

from mlab linkage (Z):

nmoan

Convert a linkage matrix generated by MATLAB(TM) to a new

22

hierarchy.py 7/16/2022
linkage matrix compatible with this module.

The conversion does two things:

* the indices are converted from "~ 1..N°° to ~"0..(N-1)" " form,
and

* a fourth column "~ "Z[:,3] ° is added where ""Z[i,3] " represents the
number of original observations (leaves) in the non-singleton
cluster ~"i°°

This function is useful when loading in linkages from legacy data
files generated by MATLAB.

Parameters

Z : ndarray
A linkage matrix generated by MATLAB (TM) .

ZS : ndarray
A linkage matrix compatible with "~ “scipy.cluster.hierarchy™’

nmoan

Z = np.asarray(Z, dtype=np.double, order='c')
Zs = Z.shape

If it's empty, return it.
if len(Zs) == 0 or (len(Zzs) == 1 and Zs[0] == 0):
return Z.copy ()

if len(Zs) != 2:
raise ValueError ("The linkage array must be rectangular.")

If it contains no rows, return it.
if Zs[0] ==
return Z.copy ()

Zpart = Z.copy()
if Zpart[:, 0:2].min() !'= 1.0 and Zpart[:, 0:2].max() != 2 * Zs[0]:
raise ValueError ('The format of the indices is not 1..N'")

Zpart[:, 0:2] -= 1.0
CS = np.zeros((Zs[0],), dtype=np.double)
_hierarchy.calculate cluster sizes(Zpart, CS, int(Zs[0]) + 1)

return np.hstack([Zpgrt, CS.Eeshape(Zs[O], 1))

def to mlab linkage(Z):

nmoan

Convert a linkage matrix to a MATLAB(TM) compatible one.

Converts a linkage matrix "~ 'Z ° generated by the linkage function
of this module to a MATLAB (TM) compatible one. The return linkage
matrix has the last column removed and the cluster indices are
converted to ""1..N" " indexing.

Parameters

Z : ndarray
A linkage matrix generated by "~ “scipy.cluster.hierarchy

Returns

23

hierarchy.py

def

def

to mlab linkage : ndarray
A linkage matrix compatible with MATLAB(TM) 's hierarchical
clustering functions.

The return linkage matrix has the last column removed
and the cluster indices are converted to "~"1..N " indexing.

nmoan

Z = np.asarray(Z, order='c', dtype=np.double)

Zs = Z.shape

if len(Zs) == 0 or (len(Zzs) == 1 and Zs[0] == 0):
return Z.copy ()

is_valid linkage(Z, throw=True, name='Z")

ZP = 7]
zP[:, O

, 0:3].copy()
:2] += 1.0

return ZP

is monotonic(Z) :

IRIET)

Return True if the linkage passed is monotonic.

The linkage is monotonic if for every cluster :math: s and :math:

joined, the distance between them is no less than the distance
between any previously joined clusters.

Parameters

Z : ndarray
The linkage matrix to check for monotonicity.

b : bool
A boolean indicating whether the linkage is monotonic.

nmoan

Z = np.asarray(Z, order='c')
is_valid linkage(Z, throw=True, name='Z")

We expect the i'th value to be greater than its successor.
return (z[1l:, 2] >= Z[:-1, 2]).all()
is_valid im(R, warning=False, throw=False, name=None) :

""Return True if the inconsistency matrix passed is valid.

It must be a :math: n° by 4 array of doubles. The standard

deviations " "R[:,1] " must be nonnegative. The link counts
"R[:,2] ° must be positive and no greater than :math: ' n-1°
Parameters

R : ndarray
The inconsistency matrix to check for wvalidity.
warning : bool, optional
When True, issues a Python warning if the linkage
matrix passed is invalid.
throw : bool, optional
When True, throws a Python exception if the linkage
matrix passed is invalid.

24

7/16/2022

cee

hierarchy.py 7/16/2022

def

name : str, optional
This string refers to the variable name of the invalid
linkage matrix.

b : bool
True if the inconsistency matrix is valid.

nmoan

R = np.asarray (R, order='c'")

valid = True

name str = "$r " % name if name else ''

try:

if type(R) != np.ndarray:

raise TypeError ('Variable %$spassed as inconsistency matrix is not
]

[o)

'a numpy array.' % name_ str)

if R.dtype != np.double:
raise TypeError ('Inconsistency matrix %$smust contain doubles '
' (double) .' % name_ str)
if len(R.shape) != 2:
raise ValueError ('Inconsistency matrix %smust have shape=2 (i.e. '
'be two-dimensional).' % name_ str)
if R.shape[l] != 4:
raise ValueError ('Inconsistency matrix %smust have 4 columns.' %
name_str)

if R.shape[0] < 1:
raise ValueError ('Inconsistency matrix %smust have at least one '

v T Q9

row. % name_str)
if (R[:, 0] < 0).any():
raise ValueError ('Inconsistency matrix %$scontains negative link
'height means.' % name_ str)
if (R[:, 1] < 0).any():
raise ValueError ('Inconsistency matrix %scontains negative link
'height standard deviations.' % name_ str)
if (R[:, 2] < 0).any():
raise ValueError ('Inconsistency matrix %scontains negative link '

o)

'counts.' % name_ str)

except Exception as e:
if throw:
raise
if warning:
_warning(str(e))
valid = False

return valid
is _valid linkage(Z, warning=False, throw=False, name=None) :
mworw

Check the wvalidity of a linkage matrix.

A linkage matrix is wvalid if it is a two dimensional array (type double)
with :math: n° rows and 4 columns. The first two columns must contain

indices between 0 and :math: 2n-1". For a given row i, the following
two expressions have to hold:

math::

0 \\leg \\mathtt{Z[i,0]} \\leq i+n-1
0 \\leq Z[i,1] \\leq i+n-1

I.e. a cluster cannot join another cluster unless the cluster being joined

25

hierarchy.py 7/16/2022
has been generated.

Parameters

Z : array like
Linkage matrix.

warning : bool, optional
When True, issues a Python warning if the linkage
matrix passed is invalid.

throw : bool, optional
When True, throws a Python exception if the linkage
matrix passed is invalid.

name : str, optional
This string refers to the variable name of the invalid
linkage matrix.

b : bool
True if the inconsistency matrix is valid.

nmoan

Z = np.asarray(Z, order='c')
valid = True
name str = "$r " % name if name else ''
try:
if type(Z) != np.ndarray:

raise TypeError ('Passed linkage argument %sis not a valid array.'

o

°

name_str)
if Z.dtype != np.double:
raise TypeError ('Linkage matrix %smust contain doubles.' %
name_str)
if len(Z.shape) != 2:
raise ValueError ('Linkage matrix %smust have shape=2 (i.e. be '
'two-dimensional).' % name_ str)
if Z.shape[l] != 4:
raise ValueError ('Linkage matrix %$smust have 4 columns.' %
name_str)
if Z.shape[0] == 0:
raise ValueError ('Linkage must be computed on at least two '
'observations."')
n = Z.shape[O0]
if n > 1:
if ((zZz[:, 0] < 0).any() or (Z[:, 1] < 0).any()):
raise ValueError ('Linkage %scontains negative indices.' %
name_str)
if (Z[:, 2] < 0).any():
raise ValueError ('Linkage %scontains negative distances.' %
name_ str)
if (Z[:, 3] < 0).any():
raise ValueError ('Linkage %scontains negative counts.' %
name_ str)

if check hierarchy uses cluster before formed(Z):
raise ValueError ('Linkage %suses non-singleton cluster before '
'it is formed.' % name_ str)
if check hierarchy uses cluster more than once (Z):
raise ValueError ('Linkage %suses the same cluster more than once.'
% name_str)
except Exception as e:
if throw:
raise
if warning:
_warning(str(e))

26

hierarchy.py 7/16/2022

def

def

def

def

def

valid = False

return valid

_check hierarchy uses cluster before formed(Z):
n = Z.shape[0] + 1
for i in xrange(0, n - 1):
if z[i, 0] > n + i or Z[i, 1] > n + 1i:
return True
return False

_check hierarchy uses cluster more than once(Z):
n = Z.shape[0] + 1

chosen = set([])
for i in xrange(0, n - 1):
if (Z[i, 0] in chosen) or (Z[i, 1] in chosen) or Z[i, 0] == Z[i, 1]:

return True
chosen.add(z[i, 01)
chosen.add(z[i, 11)
return False

_check hierarchy not all clusters used(Z):

n = Z.shape[0] + 1

chosen = set([])

for i in xrange(0, n - 1):
chosen.add (int (z[i, 0]))
chosen.add (int (z[i, 1]))

must chosen = set(range(0, 2 * n - 2))

return len(must chosen.difference (chosen)) > 0

num_obs linkage (Z) :

nmoan

Return the number of original observations of the linkage matrix passed.

Parameters

Z : ndarray
The linkage matrix on which to perform the operation.

n : int
The number of original observations in the linkage.

nmoan

Z = np.asarray(Z, order='c')
is_valid linkage(Z, throw=True, name='Z")
return (Z.shape[0] + 1)

correspond(Z, Y):

nmoan

Check for correspondence between linkage and condensed distance matrices.

They must have the same number of original observations for
the check to succeed.

This function is useful as a sanity check in algorithms that make

extensive use of linkage and distance matrices that must
correspond to the same set of original observations.

27

hierarchy.py 7/16/2022

def

Parameters
Z : array like
The linkage matrix to check for correspondence.
Y : array like
The condensed distance matrix to check for correspondence.

Returns

b : bool
A boolean indicating whether the linkage matrix and distance
matrix could possibly correspond to one another.

nmoan

is _valid linkage(Z, throw=True)
distance.is valid y (Y, throw=True)

Z = np.asarray(Z, order='c')

Y = np.asarray (Y, order='c'")

return distance.num obs y(Y) == num obs_linkage (Z)

fcluster (Zz, t, criterion='inconsistent', depth=2, R=None, monocrit=None) :

nmoan

Form flat clusters from the hierarchical clustering defined by
the given linkage matrix.

Parameters

Z : ndarray
The hierarchical clustering encoded with the matrix returned
by the “linkage”™ function.

t : float
The threshold to apply when forming flat clusters.
criterion : str, optional

The criterion to use in forming flat clusters. This can
be any of the following values:

“inconsistent "’
If a cluster node and all its
descendants have an inconsistent value less than or equal
to "t then all its leaf descendants belong to the
same flat cluster. When no non-singleton cluster meets
this criterion, every node is assigned to its own
cluster. (Default)

‘distance’’
Forms flat clusters so that the original
observations in each flat cluster have no greater a
cophenetic distance than "t~

‘maxclust
Finds a minimum threshold "~"r " so that
the cophenetic distance between any two original
observations in the same flat cluster is no more than
‘r°° and no more than "t flat clusters are formed.

‘monocrit
Forms a flat cluster from a cluster node c
with index i when "~ "monocrit([j] <= t " .

For example, to threshold on the maximum mean distance

as computed in the inconsistency matrix R with a
threshold of 0.8 do::

28

hierarchy.py 7/16/2022
MR = maxRstat (Z, R, 3)
cluster (zZz, t=0.8, criterion='monocrit', monocrit=MR)

" "maxclust monocrit’®’
Forms a flat cluster from a

non-singleton cluster node "¢’ when "~ “monocrit[i] <=
r'° for all cluster indices ""i " below and including
¢, Tr7 is minimized such that no more than T tT°

flat clusters are formed. monocrit must be

monotonic. For example, to minimize the threshold t on
maximum inconsistency values so that no more than 3 flat
clusters are formed, do::

MI = maxinconsts(Z, R)
cluster(Z, t=3, criterion='maxclust monocrit', monocrit=MI)

depth : int, optional
The maximum depth to perform the inconsistency calculation.
It has no meaning for the other criteria. Default is 2.
R : ndarray, optional
The inconsistency matrix to use for the 'inconsistent'
criterion. This matrix is computed if not provided.
monocrit : ndarray, optional
An array of length n-1. "monocrit[i]” is the
statistics upon which non-singleton i is thresholded. The
monocrit vector must be monotonic, i.e. given a node ¢ with
index i, for all node indices j corresponding to nodes

below ¢, "~ "monocrit[i] >= monocrit[7j]

Returns
fcluster : ndarray
An array of length “"n . ""T[i] ~ is the flat cluster number to

which original observation i belongs.

nmoan

Z = np.asarray(Z, order='c')
is_valid linkage(Z, throw=True, name='Z")

n = Z.shape[0] + 1
T np.zeros((n,), dtype='i'")

Since the C code does not support striding using strides.
The dimensions are used instead.
[Z] = copy arrays if base present([Z])

if criterion == 'inconsistent':

if R is None:
R = inconsistent (Z, depth)

else:
R = np.asarray (R, order='c'")
is_valid im(R, throw=True, name='R"')
Since the C code does not support striding using strides.
The dimensions are used instead.

[R] = copy arrays if base present ([R])
_hierarchy.cluster in(z, R, T, float(t), int(n))
elif criterion == 'distance':
_hierarchy.cluster dist(z, T, float(t), int(n))
elif criterion == 'maxclust':
_hierarchy.cluster maxclust dist(Z, T, int(n), int(t))
elif criterion == 'monocrit':
[monocrit] = copy arrays 1if base present ([monocrit])

_hierarchy.cluster monocrit(Z, monocrit, T, float(t), int(n))

29

hierarchy.py 7/16/2022

def

elif criterion == 'maxclust monocrit':
[monocrit] = copy arrays 1if base present ([monocrit])
_hierarchy.cluster maxclust monocrit (Z, monocrit, T, int(n), int(t))
else:
raise ValueError ('Invalid cluster formation criterion: %s

[o)

% str(criterion))

return T

fclusterdata (X, t, criterion='inconsistent',
metric='euclidean', depth=2, method='single', R=None) :

nmoan

Cluster observation data using a given metric.

Clusters the original observations in the n-by-m data

matrix X (n observations in m dimensions), using the euclidean
distance metric to calculate distances between original observations,
performs hierarchical clustering using the single linkage algorithm,
and forms flat clusters using the inconsistency method with "t as the
cut-off threshold.

A one-dimensional array =~ T ° of length “~'n " is returned. "~ "T[i] " is
the index of the flat cluster to which the original observation "~ i °
belongs.

Parameters

X : (N, M) ndarray

N by M data matrix with N observations in M dimensions.
t : float
The threshold to apply when forming flat clusters.

criterion : str, optional
Specifies the criterion for forming flat clusters. Valid
values are 'inconsistent' (default), 'distance', or 'maxclust'
cluster formation algorithms. See “fcluster® for descriptions.
metric : str, optional
The distance metric for calculating pairwise distances. See
"‘distance.pdist’ for descriptions and linkage to verify

compatibility with the linkage method.

depth : int, optional
The maximum depth for the inconsistency calculation. See
‘inconsistent® for more information.

method : str, optional
The linkage method to use (single, complete, average,
weighted, median centroid, ward). See "“linkage’ for more
information. Default is "single".

R : ndarray, optional
The inconsistency matrix. It will be computed if necessary
if it is not passed.

Returns

fclusterdata : ndarray
A vector of length n. T[i] is the flat cluster number to
which original observation i belongs.

See Also

scipy.spatial.distance.pdist : pairwise distance metrics

This function is similar to the MATLAB function "~ “clusterdata’’

30

hierarchy.py 7/16/2022

def

p

e

nmoan

X = np.asarray (X, order='c', dtype=np.double)

if type(X) != np.ndarray or len(X.shape) != 2:
raise TypeError ('The observation matrix X must be an n by m numpy '
'array."')

Y = distance.pdist (X, metric=metric)
Z = linkage (Y, method=method)
if R is None:
R = inconsistent (Z, d=depth)
else:
R = np.asarray (R, order='c'")
T = fcluster(Z, criterion=criterion, depth=depth, R=R, t=t)
return T

leaves list (Z):

nmoan

Return a list of leaf node ids.

The return corresponds to the observation vector index as it appears
in the tree from left to right. Z is a linkage matrix.

Parameters
Z : ndarray
The hierarchical clustering encoded as a matrix. “Z° 1is
a linkage matrix. See "linkage’ for more information.
Returns

leaves list : ndarray
The list of leaf node ids.

nmoan

Z = np.asarray(Z, order='c')

is_valid linkage(Z, throw=True, name='Z")
n = Z.shape[0] + 1

ML = np.zeros((n,), dtype='i'")

[Z] = copy arrays if base present([Z])
_hierarchy.prelist(Z, ML, int(n))

return ML

Maps number of leaves to text size.

<= 20, size="12"

20 < p <= 30, size="10"
30 < p <= 50, size="8"
50 < p <= np.inf, size="6"

dtextsizes = {20: 12, 30: 10, 50: 8, 85: 6, np.inf: 5}
_drotation = {20: 0, 40: 45, np.inf: 90}

dtextsortedkeys = list(dtextsizes.keys())

dtextsortedkeys.sort ()

drotationsortedkeys = list(drotation.keys())

_drotationsortedkeys.sort ()

def

remove dups (L) :

KKIRT

Remove duplicates AND preserve the original order of the elements.

31

hierarchy.py 7/16/2022

The set class is not guaranteed to do this.
seen before = set([])
L2 = [1
for i in L:
if 1 not in seen before:

seen before.add (i)

L2.append (i)
return L2

def get tick text size(p):
for k in dtextsortedkeys:
if p <= k:
return _dtextsizes[k]

def get tick rotation(p):
for k in drotationsortedkeys:
if p <= k:
return _drotation[k]

def plot dendrogram(icoords, dcoords, ivl, p, n, mh, orientation,
no_ labels, color list, leaf font size=None,
leaf rotation=None, contraction marks=None,
ax=None, above threshold color='b'"):
Import matplotlib here so that it's not imported unless dendrograms
are plotted. Raise an informative error if importing fails.
try:
if an axis is provided, don't use pylab at all
if ax is None:
import matplotlib.pylab
import matplotlib.patches
import matplotlib.collections
except ImportError:
raise ImportError ("You must install the matplotlib library to plot "
"the dendrogram. Use no_plot=True to calculate the "
"dendrogram without plotting.")

if ax is None:
ax = matplotlib.pylab.gca/()
if we're using pylab, we want to trigger a draw at the end
trigger redraw = True
else:
trigger redraw = False

Independent variable plot width
ivw = len(ivl) * 10

Dependent variable plot height
dvw = mh + mh * 0.05

iv_ticks = np.arange(5, len(ivl) * 10 + 5, 10)
if orientation in ('top', 'bottom'):
if orientation == 'top':
ax.set ylim ([0, dvw])
ax.set x1im ([0, ivw])
else:
ax.set ylim([dvw, O0])
ax.set x1im ([0, ivw])

xlines = icoords

ylines = dcoords
if no labels:

32

hierarchy.py 7/16/2022

ax.set xticks([])

ax.set xticklabels([])
else:

ax.set xticks (iv_ticks)

if orientation == 'top':
ax.xaxls.set ticks position('bottom')
else:
ax.xaxls.set ticks position('top')

Make the tick marks invisible because they cover up the links
for line in ax.get xticklines():
line.set visible (False)

leaf rot = (float(get tick rotation(len(ivl)))
if (leaf rotation is None) else leaf rotation)
leaf font = (float(get tick text size(len(ivl)))

if (leaf font size is None) else leaf font size)
ax.set xticklabels(ivl, rotation=leaf rot, size=leaf font)

elif orientation in ('left', 'right'):
if orientation == 'left':
ax.set xlim([dvw, 0])
ax.set ylim ([0, ivw])
else:
ax.set x1im ([0, dvw])
ax.set ylim ([0, ivw])

xlines = dcoords
ylines icoords
if no labels:
ax.set _yticks([])
ax.set yticklabels([])
else:
ax.set yticks (iv_ticks)

if orientation == 'left':
ax.yaxis.set ticks position('right')

else:
ax.yaxis.set ticks position('left')

Make the tick marks invisible because they cover up the links
for line in ax.get yticklines():
line.set visible (False)

leaf font = (float(get tick text size(len(ivl)))
if (leaf font size is None) else leaf font size)

if leaf rotation is not None:
ax.set yticklabels(ivl, rotation=leaf rotation,
size=leaf font)

else:
ax.set yticklabels(ivl, size=leaf font)

Let's use collections instead. This way there is a separate legend item
for each tree grouping, rather than stupidly one for each line segment.
colors used = remove dups(color list)
color to lines = {}
for color in colors_used:

color to lines[color] = []
for (xline, yline, color) in zip(xlines, ylines, color list):

color_ to lines[color].append(list(zip(xline, yline)))
colors to collections = {}

33

hierarchy.py 7/16/2022

Construct the collections.
for color in colors_used:
coll = matplotlib.collections.LineCollection(color to lines[color],
colors=(color,))
colors _to collections[color] = coll

Add all the groupings below the color threshold.
for color in colors_used:
if color != above threshold color:
ax.add collection(colors_to collections[color])
If there's a grouping of links above the color threshold, it goes last.
if above threshold color in colors_to collections:
ax.add collection(colors_to collections[above threshold color])

if contraction marks is not None:
Ellipse = matplotlib.patches.Ellipse
for (x, y) in contraction marks:
if orientation in ('left', 'right'):
e = Ellipse((y, x), width=dvw / 100, height=1.0)
else:
e = Ellipse((x, y), width=1.0, height=dvw / 100)
ax.add artist (e)
e.set clip box(ax.bbox)
e.set_alpha(0.5)
e.set facecolor('k')

if trigger redraw:
matplotlib.pylab.draw if interactive()

_link line colors = ['g', 'r', 'c', 'm',

def set link color palette(palette):

Set list of matplotlib color codes for use by dendrogram.

Note that this palette is global (i.e. setting it once changes the colors
for all subsequent calls to “dendrogram’) and that it affects only the
the colors below " "color threshold .

Note that “dendrogram™ also accepts a custom coloring function through its

""link color_ func' ' keyword, which is more flexible and non-global.

Parameters

palette : list of str or None
A list of matplotlib color codes. The order of the color codes is the
order in which the colors are cycled through when color thresholding
in

the dendrogram.
If “"None ', resets the palette to its default (which is
“[lgl, 'r', ICI, lmI, ly|, Ikl}“)'

dendrogram

Notes

34

hierarchy.py 7/16/2022

def

Ability to reset the palette with "~ "None ° added in Scipy 0.17.0.

Examples

>>> from scipy.cluster import hierarchy

>>> ytdist = np.array([662., 877., 255., 412., 996., 295., 468., 268.,
ce 400., 754., 564., 138., 219., 869., 669.1)

>>> 7 = hierarchy.linkage (ytdist, 'single')

>>> dn = hierarchy.dendrogram(Z, no_ plot=True)

>>> dn['color list']

[lgl, lbl, lbl, lbl, Ibl}

>>> hierarchy.set link color palette(['c', 'm', 'y', 'k'])

>>> dn = hierarchy.dendrogram(Z, no_ plot=True)

>>> dn['color list']

['C', 'b', 'b', 'b', 'b'}

>>> dn = hierarchy.dendrogram(z, no_plot=True, color threshold=267,
. above threshold color='k'")

>>> dn['color list']
['C', |m|, |m|, 'k', 'k'}

Now reset the color palette to its default:

>>> hierarchy.set link color palette (None)

nmoan

if palette is None:

reset to its default

palette — ['gll |r|, 'C', |m|, |y|, 'k'}
elif type(palette) not in (list, tuple):

raise TypeError ("palette must be a list or tuple")
_ptypes = [isinstance(p, string types) for p in palette]

if False in ptypes:
raise TypeError ("all palette list elements must be color strings")

for i in list(link line colors):
_link line colors.remove (i)
_link line colors.extend(list (palette))

dendrogram(Z, p=30, truncate mode=None, color_ threshold=None,
get leaves=True, orientation='top', labels=None,
count sort=False, distance sort=False, show leaf counts=True,
no_plot=False, no_ labels=False, leaf font size=None,
leaf rotation=None, leaf label func=None,
show_contracted=False, link color_ func=None, ax=None,
above threshold color='b'"):

nmoan

Plot the hierarchical clustering as a dendrogram.

The dendrogram illustrates how each cluster is

composed by drawing a U-shaped link between a non-singleton
cluster and its children. The top of the U-link indicates a
cluster merge. The two legs of the U-link indicate which clusters
were merged. The length of the two legs of the U-link represents
the distance between the child clusters. It is also the
cophenetic distance between original observations in the two
children clusters.

Parameters

Z : ndarray
The linkage matrix encoding the hierarchical clustering to

35

hierarchy.py 7/16/2022

render as a dendrogram. See the "~ “linkage’ " function for more
information on the format of "7 °

o) int, optional
The "~ 'p ° parameter for °~truncate mode

truncate mode : str, optional

The dendrogram can be hard to read when the original
observation matrix from which the linkage is derived is
large. Truncation is used to condense the dendrogram. There
are several modes:

"None ™
No truncation is performed (default).
Note: "~ “'none' " is an alias for "~ "None °~ that's kept for

backward compatibility.

“'lastp!' e

The last "~ 'p° non-singleton clusters formed in the linkage are the
only non-leaf nodes in the linkage; they correspond to rows
"Z[n-p-2:end] " in " °Z °. All other non-singleton clusters are
contracted into leaf nodes.

“llevel!' T
No more than "~ "p° " levels of the dendrogram tree are displayed.
A "level" includes all nodes with ~"p ' merges from the last merge.

Note: "~ “'mtica' " is an alias for "~ 'level' " that's kept for
backward compatibility.

color threshold : double, optional

For brevity, let :math: 't be the " “color threshold ".

Colors all the descendent links below a cluster node

:math: "k° the same color if :math: 'k’ is the first node below
the cut threshold :math: t . All links connecting nodes with
distances greater than or equal to the threshold are colored
blue. If :math: t° is less than or equal to zero, all nodes
are colored blue. If " “color threshold ° is None or
'default', corresponding with MATLAB (TM) behavior, the
threshold is set to " "0.7*max(Z[:,2]) °

get leaves : bool, optional
Includes a list ~"R['leaves']=H °~ in the result
dictionary. For each :math: i", "~ "H[i] == j °, cluster node
"3 appears in position T UiTC in the left-to-right traversal

i
of the leaves, where :math: j < 2n-1" and :math: i < n".

orientation : str, optional

The direction to plot the dendrogram, which can be any
of the following strings:

“top!'
Plots the root at the top, and plot descendent links going
downwards.

(default) .

“'bottom' ™"
Plots the root at the bottom, and plot descendent links going
upwards.

Tlleft' e
Plots the root at the left, and plot descendent links going right.

“'right'™®
Plots the root at the right, and plot descendent links going left.
labels : ndarray, optional
By default "~ “labels " is None so the index of the original observation

36

hierarchy.py 7/16/2022

is used to label the leaf nodes. Otherwise, this is an :math: ' n°
-sized list (or tuple). The "~ “labels[i] ° wvalue is the text to put
under the :math: 1" th leaf node only if it corresponds to an original
observation and not a non-singleton cluster.

count _sort : str or bool, optional
For each node n, the order (visually, from left-to-right) n's
two descendent links are plotted is determined by this
parameter, which can be any of the following values:

‘False
Nothing is done.

“'ascending'®" or "~ True "
The child with the minimum number of original objects in its cluster
is plotted first.

“'descendent' ™"
The child with the maximum number of original objects in its cluster
is plotted first.

Note "~ ‘'distance _sort’ and " “count sort’ cannot both be True.
distance_sort : str or bool, optional

For each node n, the order (visually, from left-to-right) n's

two descendent links are plotted is determined by this

parameter, which can be any of the following values:

‘False
Nothing is done.

“'ascending'®" or "~ True "
The child with the minimum distance between its direct descendents
is

plotted first.

"'descending' "

The child with the maximum distance between its direct descendents
is

plotted first.

Note "~ ‘'distance _sort’ and " “count sort’ cannot both be True.
show leaf counts : bool, optional
When True, leaf nodes representing :math: k>1" original
observation are labeled with the number of observations they
contain in parentheses.
no _plot : bool, optional
When True, the final rendering is not performed. This is
useful if only the data structures computed for the rendering
are needed or if matplotlib is not available.
no_labels : bool, optional
When True, no labels appear next to the leaf nodes in the
rendering of the dendrogram.
leaf rotation : double, optional
Specifies the angle (in degrees) to rotate the leaf
labels. When unspecified, the rotation is based on the number of
nodes in the dendrogram (default is 0).
leaf font size : int, optional
Specifies the font size (in points) of the leaf labels. When
unspecified, the size based on the number of nodes in the

dendrogram.

leaf label func : lambda or function, optional
When leaf label func is a callable function, for each
leaf with cluster index :math: 'k < 2n-1". The function
is expected to return a string with the label for the
leaf.

37

hierarchy.py 7/16/2022

Indices :math: 'k < n° correspond to original observations
while indices :math: k \\geq n° correspond to non-singleton
clusters.

For example, to label singletons with their node id and
non-singletons with their id, count, and inconsistency
coefficient, simply do::

First define the leaf label function.
def 11f(id):
if id < n:
return str(id)
else:
return '[%d %d $1.2f]' % (id, count, R[n-id,3])
The text for the leaf nodes is going to be big so force
a rotation of 90 degrees.
dendrogram(Z, leaf label func=11f, leaf rotation=90)

show contracted : bool, optional
When True the heights of non-singleton nodes contracted
into a leaf node are plotted as crosses along the link

connecting that leaf node. This really is only useful when
truncation is used (see " “truncate mode ' parameter).
link color func : callable, optional

If given, ‘link color function' is called with each non-singleton id
corresponding to each U-shaped link it will paint. The function is
expected to return the color to paint the link, encoded as a
matplotlib

color string code. For example::

dendrogram(Z, link color func=lambda k: colors[k])

colors the direct links below each untruncated non-singleton node
"k using "~ colorsf[k]
ax : matplotlib Axes instance, optional
If None and "'no _plot® is not True, the dendrogram will be plotted

on the current axes. Otherwise if "no plot’' is not True the
dendrogram will be plotted on the given "~ "Axes instance. This can be
useful if the dendrogram is part of a more complex figure.

above threshold color : str, optional

This matplotlib color string sets the color of the links above the
color threshold. The default is 'b'.

Returns

R : dict
A dictionary of data structures computed to render the
dendrogram. Its has the following keys:

"'color list'™’
A list of color names. The k'th element represents the color of the

k'th link.

“'icoord' " and " 'dcoord'™"

Each of them is a list of lists. Let "~ “icoord = [I1l, I2, ..., Ipl °

where "Ik = [xkl, xk2, xk3, xk4] ° and " “dcoord = [D1l, D2, ...,

Dp] *

where "~ "Dk = [ykl, yk2, yk3, yk4] ", then the k'th link painted is
T (xk1l, yk1)° - " (xk2, yk2) " - "7 (xk3, yk3) " - "7 (xk4, yk4d) .

Trtivl' e

A list of labels corresponding to the leaf nodes.

38

hierarchy.py 7/16/2022

“'leaves'™®

For each i, ""H[i] == j °, cluster node "~"j appears in position
717" in the left-to-right traversal of the leaves, where

:math:j < 2n-1° and :math: i < n'. If “°j°° 1is less than “~"'n ", the
"1 "-th leaf node corresponds to an original observation.

Otherwise, it corresponds to a non-singleton cluster.

linkage, set link color palette

It is expected that the distances in ~"Z[:,2] " be monotonic, otherwise
crossings appear in the dendrogram.

Examples
>>> from scipy.cluster import hierarchy
>>> import matplotlib.pyplot as plt

A very basic example:

>>> ytdist = np.array([662., 877., 255., 412., 996., 295., 468., 268.,
... 400., 754., 564., 138., 219., 869., 669.1)

>>> 7 = hierarchy.linkage (ytdist, 'single')

>>> plt.figure ()

>>> dn = hierarchy.dendrogram(Z)

Now plot in given axes, improve the color scheme and use both vertical and
horizontal orientations:

>>> hierarchy.set link color palette(['m', 'c', 'y', 'k'])
>>> fig, axes = plt.subplots(l, 2, figsize=(8, 3))

>>> dnl = hierarchy.dendrogram(Z, ax=axes[0], above threshold color='y',
... orientation="top"')
>>> dn2 = hierarchy.dendrogram(Z, ax=axes[1l],

above threshold color='#bcbddc',
... orientation="'right')
>>> hierarchy.set link color palette(None) # reset to default after use
>>> plt.show ()

nmoan

This feature was thought about but never implemented (still useful?):

#

= dendrogram(..., leaves_ order=None)

#

Plots the leaves in the order specified by a vector of

original observation indices. If the vector contains duplicates
or results in a crossing, an exception will be thrown. Passing
None orders leaf nodes based on the order they appear in the

pre-order traversal.

Z = np.asarray(Z, order='c')

if orientation not in ["top", "left", "bottom", "right"]:

raise ValueError ("orientation must be one of 'top', 'left', "
"'bottom', or 'right'")

is_valid linkage(Z, throw=True, name='Z")
Zs = Z.shape
n = 7s[0] + 1
if type(p) in (int, float):
p = int(p)
else:

39

hierarchy.py 7/16/2022
raise TypeError ('The second argument must be a number')
if truncate mode not in ('lastp', 'mlab', 'mtica', 'level', 'none', None):

'mlab' and 'mtica' are kept working for backwards compat.
raise ValueError ('Invalid truncation mode.')

if truncate mode == 'lastp' or truncate mode == 'mlab':
if p > n or p ==
p=n
if truncate mode == 'mtica':
'mtica' is an alias
truncate mode = 'level'
if truncate mode == 'level':
if p <= 0:
p = np.inf
if get leaves:
lvs = []
else:

lvs = None

icoord list []
dcoord list = []
color list = []

current color = [0]
currently below threshold = [False]
ivl = [] # list of leaves

if color threshold is None or (isinstance(color threshold, string types)

and
color threshold == 'default'):
color threshold = max(z[:, 2]) * 0.7
R = {'icoord': icoord list, 'dcoord': dcoord list, 'ivl': ivl,
'leaves': lvs, 'color list': color list}

Empty list will be filled in dendrogram calculate info
contraction marks = [] if show contracted else None

_dendrogram _calculate info(
=%, pP=p,
truncate mode=truncate mode,
color threshold=color_ threshold,
get leaves=get leaves,
orientation=orientation,
labels=labels,
count sort=count_ sort,
distance_ sort=distance_sort,
show leaf counts=show leaf counts,
i=2*n - 2,
iv=0.0,
ivl=ivl,
n=n,
icoord list=icoord list,
dcoord list=dcoord list,
lvs=1lvs,
current color=current color,
color list=color list,
currently below threshold=currently below threshold,
leaf label func=leaf label func,
contraction marks=contraction marks,
link color func=link color func,

40

hierarchy.py 7/16/2022
above threshold color=above threshold color)

if not no plot:

mh = max(z[:, 2])

_plot dendrogram(icoord list, dcoord list, ivl, p, n, mh, orientation,
no_ labels, color list,
leaf font size=leaf font size,
leaf rotation=leaf rotation,
contraction marks=contraction marks,
ax=ax,
above threshold color=above threshold color)

return R

def append singleton leaf node(Z, p, n, level, lvs, ivl, leaf label func,
i, labels):
If the leaf id structure is not None and is a list then the caller
to dendrogram has indicated that cluster id's corresponding to the
leaf nodes should be recorded.

if lvs is not None:
lvs.append (int (1))

If leaf node labels are to be displayed...
if ivl is not None:
If a leaf label func has been provided, the label comes from the
string returned from the leaf label func, which is a function
passed to dendrogram.
if leaf label func:
ivl.append(leaf label func(int(i)))
else:
Otherwise, if the dendrogram caller has passed a labels list
for the leaf nodes, use it.
if labels is not None:
ivl.append(labels[int (i - n)])
else:
Otherwise, use the id as the label for the leaf.x
ivl.append(str (int(i)))

def append nonsingleton leaf node(Z, p, n, level, lvs, ivl, leaf label func,
i, labels, show_leaf counts):
If the leaf id structure is not None and is a list then the caller
to dendrogram has indicated that cluster id's corresponding to the
leaf nodes should be recorded.

if lvs is not None:
lvs.append (int (1))
if ivl is not None:
if leaf label func:
ivl.append(leaf label func(int(i)))
else:
if show leaf counts:
ivl.append (" (" + str(int(Z[i - n, 31)) + ™)")
else:
ivl.append("")

def append contraction marks(Z, iv, i, n, contraction marks):

_append_contraction marks sub(Zz, iv, int(Z[i - n, 0]), n,
contraction marks)
_append_contraction marks sub(Z, iv, int(Z[i - n, 1]), n,

contraction marks)

41

hierarchy.py 7/16/2022

def append contraction marks sub(Z, iv, i, n, contraction marks):
if 1 >= n:

contraction marks.append((iv, Z[i - n, 2]))
_append_contraction marks sub(Z, iv, int(Z[i - n, 0]), n,
contraction marks)

append contraction marks sub(Z, iv, int(Z[i - n, 1]), n,

contraction marks)

def dendrogram calculate info(Z, p, truncate mode,
color threshold=np.inf, get leaves=True,
orientation='top', labels=None,
count sort=False, distance sort=False,
show leaf counts=False, i=-1, iv=0.0,
ivl=[], n=0, icoord list=[], dcoord list=[],
lvs=None, mhr=False,
current color=[], color list=[],
currently below threshold=[],
leaf label func=None, level=0,
contraction marks=None,
link color func=None,
above threshold color='b'"):
Calculate the endpoints of the links as well as the labels for the
the dendrogram rooted at the node with index i. iv is the independent
variable value to plot the left-most leaf node below the root node i
(if orientation='top', this would be the left-most x value where the
plotting of this root node i and its descendents should begin).

ivl is a list to store the labels of the leaf nodes. The leaf label func

is called whenever ivl != None, labels == None, and

leaf label func != None. When ivl != None and labels != None, the
labels 1list is used only for labeling the leaf nodes. When

ivl == None, no labels are generated for leaf nodes.

When get leaves==True, a list of leaves is built as they are visited
in the dendrogram.

Returns a tuple with 1 being the independent variable coordinate that
corresponds to the midpoint of cluster to the left of cluster 1 if

i is non-singleton, otherwise the independent coordinate of the leaf
node if i is a leaf node.

Returns

A tuple (left, w, h, md), where:

* left is the independent variable coordinate of the center of the
the U of the subtree

* w is the amount of space used for the subtree (in independent
variable units)

* h is the height of the subtree in dependent variable units

* md is the " "max(Z[*,2] ") for all nodes "~ * ° below and including
the target node.

nmoan

if n ==
raise ValueError ("Invalid singleton cluster count n.")

42

hierarchy.py 7/16/2022

if 1 == -1:
raise ValueError ("Invalid root cluster index 1i.")

if truncate mode == 'lastp':
If the node is a leaf node but corresponds to a non-singleton
cluster, its label is either the empty string or the number of
original observations belonging to cluster i.
if 2*n - p > 1 >= n:

d=272[1 - n, 2]

_append nonsingleton leaf node(Z, p, n, level, lvs, ivl,
leaf label func, i, labels,
show leaf counts)

if contraction marks is not None:

_append_contraction marks(z, iv + 5.0, i, n,
contraction marks)

return (iv + 5.0, 10.0, 0.0, d)

elif 1 < n:

_append_singleton leaf node(Z, p, n, level, lvs, ivl,

leaf label func, i, labels)

return (iv + 5.0, 10.0, 0.0, 0.0)

elif truncate mode == 'level':
if i > n and level > p:

d=2[1i - n, 2]

_append nonsingleton leaf node(Z, p, n, level, lvs, ivl,
leaf label func, i, labels,
show leaf counts)

if contraction marks is not None:

_append_contraction marks(z, iv + 5.0, i, n,
contraction marks)

return (iv + 5.0, 10.0, 0.0, d)

elif 1 < n:
_append_singleton leaf node(Z, p, n, level, lvs, ivl,
leaf label func, i, labels)
return (iv + 5.0, 10.0, 0.0, 0.0)
elif truncate mode in ('mlab',):
msg = "Mode 'mlab' is deprecated in scipy 0.19.0 (it never worked)."
warnings.warn (msg, DeprecationWarning)

Otherwise, only truncate if we have a leaf node.

#
Only place leaves if they correspond to original observations.
if i < n:
_append_singleton leaf node(Z, p, n, level, lvs, ivl,
leaf label func, i, labels)
return (iv + 5.0, 10.0, 0.0, 0.0)
!'!! Otherwise, we don't have a leaf node, so work on plotting a

non-leaf node.
Actual indices of a and b
aa = int(z[i - n, 01])
ab = int(Z[i - n, 11])
if aa > n:
The number of singletons below cluster a

na = Z[laa - n, 3]
The distance between a's two direct children.
da = Z[aa - n, 2]
else:
na = 1
da = 0.0

if ab > n:
nb = Z[ab - n, 3]
db = Z[ab - n, 2]
else:
nb =1

43

hierarchy.py
db = 0.0

if count sort ==

if na > nb:

'ascending'

. or count sort:
If a has a count greater than b, it and its descendents should
be drawn to the right.

Otherwise,

to the left.

The cluster index to draw to the left (ua)

ua = ab

ub = aa
else:

ua = aa

ub = ab

elif count sort

the right.
if na > nb:

ua = aa
ub = ab
else:
ua = ab
ub = aa

elif distance sort ==

'ascending'

_ 'descending':
If a has a count less than or equal to b, it and its
descendents should be drawn to the left.

or distance sort:

will be ab
and the one to draw to the right (ub) will be aa

Otherwise,

7/16/2022

If a has a distance greater than b, it and its descendents should
be drawn to the right.

if da > db:
ua = ab
ub = aa
else:
ua = aa
ub = ab

elif distance sort ==
If a has a distance less than or equal to b, it and its
descendents should be drawn to the left.

the right.

if da > db:
ua = aa
ub = ab

else:
ua = ab
ub = aa

else:
ua = aa
ub = ab

Otherwise,

'descending':

to the left.

Updated iv variable and the amount of space used.

(uiva, uwa, uah,

uamd) = \

_dendrogram _calculate info(

=7, P=p,

truncate mode=truncate mode,

color threshold=color threshold,

get leaves=get leaves,
orientation=orientation,
labels=labels,
count sort=count_ sort,
distance_ sort=distance_sort,
show leaf counts=show leaf counts,

i=ua, iv=iv,

ivl=ivl,

n=n,

icoord list=icoord list,
dcoord list=dcoord list, lvs=lvs,
current color=current color,
color list=color 1list,

currently below threshold=currently below threshold,

44

Otherwise,

hierarchy.py 7/16/2022
leaf label func=leaf label func,
level=level + 1, contraction marks=contraction marks,
link color func=link color func,
above threshold color=above threshold color)
h =2[i-n, 2]
if h >= color threshold or color threshold <= 0:
c = above threshold color
if currently below threshold[0]:
current color[0] = (current color[0] + 1) % len(link line colors)
currently below threshold[0] = False
else:
currently below threshold[0] = True
¢ = 1link line colors[current color[0]]
(uivb, uwb, ubh, ubmd) = \
_dendrogram_calculate info(
=%, pP=p,

def

truncate mode=truncate mode,

color threshold=color_ threshold,

get leaves=get leaves,

orientation=orientation,

labels=labels,

count sort=count_ sort,

distance_ sort=distance_sort,

show leaf counts=show leaf counts,

i=ub, iv=iv + uwa, ivl=ivl, n=n,

icoord list=icoord list,

dcoord list=dcoord list, lvs=lvs,

current color=current color,

color list=color list,

currently below threshold=currently below threshold,
leaf label func=leaf label func,

level=level + 1, contraction marks=contraction marks,
link color func=link color func,

above threshold color=above threshold color)

max_dist = max(uamd, ubmd, h)

icoord list.append([uiva, uiva, uivb, uivb])
dcoord list.append([uah, h, h, ubh])
if link color func is not None:

v = link color func(int(i))

if not isinstance(v, string_ types):

raise TypeError ("link color func must return a matplotlib "

"color striﬁg!")
color list.append(v)
else:
color list.append(c)

return (((uiva + uivb) / 2), uwa + uwb, h, max dist)

is isomorphic (T1l, T2):

IRIET)

Determine if two different cluster assignments are equivalent.

Parameters

Tl : array like

An assignment of singleton cluster ids to flat cluster ids.

T2 : array like

An assignment of singleton cluster ids to flat cluster ids.

45

hierarchy.py

def

Returns

b : bool
Whether the flat cluster assignments Tl and T2
equivalent.

Tl = np.asarray(Tl, order='c')

T2 = np.asarray (T2, order='c'")

if type(Tl) != np.ndarray:
raise TypeError ('Tl must be a numpy array.')

if type(T2) != np.ndarray:

raise TypeError ('T2 must be a numpy array.')

T1lS = Tl.shape
T2S T2 .shape

if len(T1S) != 1:

raise ValueError ('Tl must be one-dimensional.')
if len(T2S) != 1:

raise ValueError ('T2 must be one-dimensional.')
if T1S[0] !'= T2S[0]:

are

7/16/2022

raise ValueError ('Tl and T2 must have the same number of elements.')

n = T1S[O0]
dl = {}
daz = {}

for i in xrange (0, n):
if T1[i] in dl:
if not T2[i] in d2:
return False
if d1[T1[i]] !'= T2[i] or d2[T2[i]] !'= T1[i]:
return False
elif T2[i] in d2:
return False
else:
dl[T1[i]] = T2[i]
d2[T2[i]] = T1[i]
return True

maxdists (Z) :

nmoan

Return the maximum distance between any non-singleton cluster.

Parameters

Z : ndarray
The hierarchical clustering encoded as a matrix. See
"“linkage’ " for more information.

Returns

maxdists : ndarray
A " (n-1) " sized numpy array of doubles; "~ "MD[i] "

the maximum distance between any cluster (including

represents

singletons) below and including the node with index i.

specifically, ~"MD[i] = Z[Q(i)-n, 2].max () ~ where

set of all node indices below and including node 1i.

nmoan

Z = np.asarray(Z, order='c', dtype=np.double)
is_valid linkage(Z, throw=True, name='Z")

46

Q1)

is the

hierarchy.py 7/16/2022

n = Z.shape[0] + 1
MD = np.zeros((n - 1,))
[Z] = copy arrays if base present([Z])

_hierarchy.get max dist for each cluster(Z, MD, int(n))
return MD

def maxinconsts(Z, R):
nmoan
Return the maximum inconsistency coefficient for each
non-singleton cluster and its descendents.

Parameters

Z : ndarray
The hierarchical clustering encoded as a matrix. See
“linkage’ for more information.

R : ndarray
The inconsistency matrix.

Returns
MI : ndarray
A monotonic " (n-1) “-sized numpy array of doubles.

nmoan

Z = np.asarray(Z, order='c')

R = np.asarray (R, order='c'")

is_valid linkage(Z, throw=True, name='Z")
is valid im(R, throw=True, name='R')

n = Z.shape[0] + 1
if Z.shape[0] != R.shape[0]:
raise ValueError ("The inconsistency matrix and linkage matrix each "
"have a different number of rows.")
MI = np.zeros((n - 1,))
[Z, R] = copy arrays_ if base present([Z, R])
_hierarchy.get max Rfield for each cluster(Z, R, MI, int(n), 3)
return MI

def maxRstat(Z, R, 1i):

nmoan

Return the maximum statistic for each non-singleton cluster and its

descendents.

Parameters

Z : array like
The hierarchical clustering encoded as a matrix. See “linkage’ for
more
information.

R : array like
The inconsistency matrix.
i : int
The column of "R’ to use as the statistic.

MR : ndarray
Calculates the maximum statistic for the i'th column of the
inconsistency matrix "R° for each non-singleton cluster
node. "~ "MR[J] " is the maximum over "~ "R[Q(j)-n, i] ~ where

47

hierarchy.py

def

"Q(3) " the set of all node ids corresponding to nodes below
and including "3 °
Z = np.asarray(Z, order='c')

R = np.asarray (R, order='c'")
is_valid linkage(Z, throw=True, name='Z")
is_valid im(R, throw=True, name='R"')
if type(i) is not int:
raise TypeError ('The third argument must be an integer.')
if 1 < 0 or 1 > 3:
raise ValueError ('i must be an integer between 0 and 3 inclus

if Z.shape[0] != R.shape[0]:
raise ValueError ("The inconsistency matrix and linkage matrix
"have a different number of rows.")

n = Z.shape[0] + 1
MR = np.zeros((n - 1,))
[Z, R] = copy arrays_if base present([Z, R])
_hierarchy.get max Rfleld for each cluster(Zz, R, MR, int(n), 1)
return MR

leaders(z, T):

nmoan

Return the root nodes in a hierarchical clustering.

Returns the root nodes in a hierarchical clustering corresponding
to a cut defined by a flat cluster assignment vector ~ T °. See
the " “fcluster = function for more information on the format of

For each flat cluster :math: j° of the :math: 'k~ flat clusters
represented in the n-sized flat cluster assignment vector Tt Y,
this function finds the lowest cluster node :math: i in the link
tree Z such that:

* leaf descendents belong only to flat cluster j
(i.e. ""Tl[pl==j ° for all :math: p in :math: S(i) where
:math: "S(1i) 1s the set of leaf ids of leaf nodes descendent
with cluster node :math: 1)

* there does not exist a leaf that is not descendent with
:math: i° that also belongs to cluster :math: 3J°
(i.e. ""T[g]l'=j " for all :math: g not in :math: S(i)"). If
this condition is violated, "~ 'T°° 1is not a wvalid cluster
assignment vector, and an exception will be thrown.

Parameters

Z : ndarray
The hierarchical clustering encoded as a matrix. See
“linkage’ for more information.

T : ndarray
The flat cluster assignment vector.

Returns

L : ndarray
The leader linkage node id's stored as a k-element 1-D array
where "~ "k°° is the number of flat clusters found in "~ "T °

"L[Jj]=1i"" 1is the linkage cluster node id that is the

leader of flat cluster with id M[3j]. If 71 < n 7, i

48

7/16/2022

ive.")

each "

S

age

hierarchy.py 7/16/2022

corresponds to an original observation, otherwise it
corresponds to a non-singleton cluster.

For example: if " "L[3]=2"" and "~ "M[3]=8"", the flat cluster with
id 8's leader is linkage node 2.

M : ndarray
The leader linkage node id's stored as a k-element 1-D array where

"k™" is the number of flat clusters found in “~"T °. This allows the
set of flat cluster ids to be any arbitrary set of "k’ integers.
mworw
Z = np.asarray(Z, order='c')
T = np.asarray (T, order='c')
if type(T) !'= np.ndarray or T.dtype != 'i':
raise TypeError ('T must be a one-dimensional numpy array of
integers.')
is_valid linkage(Z, throw=True, name='Z")
if len(T) !'= Z.shape[0] + 1:
raise ValueError ('Mismatch: len(T) !=Z.shape[0] + 1.")

Cl np.unique (T)

kk = len(Cl)

L = np.zeros((kk,), dtype='i")
M np.zeros ((kk,), dtype='i'")
n = Z.shape[0] + 1
[
S
i

Z, T] = _copy arrays if base present([z, TJ])
= hierarchy.leaders(z, T, L, M, int(kk), int(n))
if s >= 0:
raise ValueError (('T is not a valid assignment vector. Error found '
'when examining linkage node %d (< 2n-1)."') % s)

return (L, M)

49

